|
Mains hum, electric hum, or power line hum is a sound associated with alternating current at the frequency of the mains electricity. The fundamental frequency of this sound is usually 50 Hz or 60 Hz, depending on the local power-line frequency. The sound often has heavy harmonic content above 50–60 Hz. Because of the presence of mains current in mains-powered audio equipment as well as ubiquitous AC electromagnetic fields from nearby appliances and wiring, 50/60 Hz electrical noise can get into audio systems, and is heard as mains hum from their speakers. Mains hum may also be heard coming from powerful electric power grid equipment such as utility transformers, caused by mechanical vibrations induced by the powerful AC current in them. == Causes of electric hum == Electric hum around transformers is caused by stray magnetic fields causing the enclosure and accessories to vibrate. Magnetostriction is a second source of vibration, where the core iron changes shape minutely when exposed to magnetic fields. The intensity of the fields, and thus the "hum" intensity, is a function of the applied voltage. Because the magnetic flux density is strongest twice every electrical cycle, the fundamental "hum" frequency will be twice the electrical frequency. Additional harmonics above 100 Hz or 120 Hz will be caused by the non-linear behavior of most common magnetic materials. Around high-voltage power lines, hum may be produced by corona discharge. In the realm of sound reinforcement (as in public address systems and loudspeakers), electric hum is often caused by induction. This hum is generated by oscillating electric currents induced in sensitive (high gain or high impedance) audio circuitry by the alternating electromagnetic fields emanating from nearby mains-powered devices like power transformers. The audible aspect of this sort of electric hum is produced by amplifiers and loudspeakers. The other major source of hum in audio equipment is shared impedances; when a heavy current is flowing through a conductor (a ground trace) that a small-signal device is also connected to. All practical conductors will have a finite, if small, resistance, and the small resistance present means that devices using different points on the conductor as a ground reference will be at slightly different potentials. This hum is usually at the second harmonic of the power line frequency (100 Hz or 120 Hz), since the heavy ground currents are from AC to DC converters that rectify the mains waveform. See also ground loop. In vacuum tube equipment, one potential source of hum is current leakage between the heaters and cathodes of the tubes. Another source is direct emission of electrons from the heater, or magnetic fields produced by the heater. Tubes for critical applications may have the heater circuit powered by direct current to prevent this source of hum.〔 Robert B. Tomer, ''Getting the most out of vacuum tubes'', Howard W. Sams, Indianapolis, USA 1960, Library of Congress card no. 60-13843, available on the Intenet Archive. Chapter 3〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Mains hum」の詳細全文を読む スポンサード リンク
|